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Abstract In this paper, we consider four measures of centrality (betweenness, 
closeness, degree, and eigenvalue centrality) in their use for the analysis of his-
torical networks. Since the sources used by historians to construct such networks 
are by their nature incomplete and imperfect, it is necessary to consider as much 
as possible the robustness of these metrics, i.e., their stability with respect to the 
hazards that time has inflicted on historical documents. To study this, we apply 
a battery of tests to three networks constructed from medieval history data. The 
first is a political history network, which represents the links between protago-
nists of the conflict for the episcopal see of Cambrai in the 11th century. The sec-
ond is a network of socio-economic history, describing the credit relations of 
merchants in Ypres during the 13th century. The third is a hagiographic network 
that depicts the connections between the lives of saints that are often compiled 
together in manuscripts. These tests are designed to simulate the processes of dis-
appearance and degradation of the information contained in sources by imitat-
ing as closely as possible the situations that historians face when manipulating 
graphs. In each of them, we create a large set of new graphs by transforming the 
original graphs, then observing the effect of these transformations on the central-
ity metrics. For this, we use a random process, but one that respects the particu-
larities of the considered networks, which are built from historical sources. Our 
results allow us to assess the general relevance of the use of centrality in historical 
network analysis, to compare the four metrics studied in terms of robustness, and 
to identify a set of methodological points to which the historian applying such 
techniques must pay particular attention.
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1.	 Introduction*

In 1933, when Henri Pirennne describes what historians are trying to do, he com-
pares the historian’s research material with “footprints in the sand which wind 
and rain have half-effaced”, arguing that they are “merely the vestiges of events 
and not even authentic vestiges”.1 This observation by the great medievalist is 
obvious to modern professional historians: pursuing historical research involves 
working with incomplete and imperfect sources. Not all the pieces of the puzzle 
that historians put together to describe the societies of the past are available, and 
some are damaged, having suffered from the vagaries of time. It is therefore es-
sential to be particularly careful when analyzing historical documents, to con-
sider as much as possible their imperfect condition, and the hazards they have 
experienced. It is at this price that the conclusions drawn from historical studies 
can be considered as reliable, as it is a central element (if not the central element) 
of the historical method.

1.1	 Robustness and Historical Analyses

This rule applies to all types of analysis that historians subject their sources to. 
Nevertheless, in the case of quantitative analyses, researchers have at their dis-
posal a set of mathematical tools that allow them to assess the reliability of the 
results obtained with regard to the defects of the documents studied. Among 
them is robustness, a concept well known to statisticians and more generally to 
researchers in the exact sciences, but rarely used in the humanities, even when 
quantitative methods are applied. In his classic book devoted to the question, 
Peter Huber defines robustness as the “insensitivity to small deviations from the 
assumptions”.2 He uses the term “assumptions” to cover a wide range of modeling 
choices, which we will reduce here to the set of constraints that are imposed on 
the historian carrying out a quantitative analysis by the condition of the sources 
he handles. Gaps and errors in the available documents are the source of devia-
tions in the results obtained (with respect to the correct depiction of the studied 
phenomenon), the effects of which can be at least partially mitigated by using a 
robust quantitative analysis tool.

Before getting to the heart of the matter and presenting the actual framework 
of our study, let’s see how this concept comes into play in the context of a very 

* Acknowledgements: I warmly thank my colleagues Céline Engelbeen and Étienne 
Cuvelier from the Laboratoire Quaresmi for their valuable feedback on this paper, as well 
as Antoine and Arthur de Valeriola.

 Corresponding author: Sébastien de Valeriola, Université libre de Bruxelles 
(ReSic) and ICHEC Brussels management school (Laboratoire Quaresmi); sebastien.
de.valeriola@ulb.be

1 Pirenne (1933), p. 438.
2 Huber/Ronchetti (2009), p. 2.
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simple example of a quantitative analysis of historical sources. Suppose we want 
to estimate the typical amount (statisticians would say the “central tendency”) of 
loans made by a merchant in some medieval city. We have at our disposal a set 
of credit contracts in which the merchant appears as the creditor, specifying each 
time the amount of money lent to the borrower. The first obvious way to estimate 
this typical amount is to calculate the arithmetic mean of the loans granted: for 
example, based on four amounts of 88, 95, 99 and 118 pounds, we would have 
an arithmetic mean of 100 pounds. Now let’s imagine that a fifth loan contract 
resurfaces after being misclassified, in which our merchant lent 600 pounds, a 
very large amount compared to the first four. The arithmetic mean, recalculated 
on the basis of the five amounts now available, is equal to 200 pounds, double 
the value it had before the document was rediscovered. This high sensitivity to 
the addition of extreme data – or in other words, a lack of robustness – is one of 
the drawbacks of the arithmetic mean as a statistical indicator of central ten-
dency. To overcome this problem, one might consider using the median rather 
than the mean to estimate the typical amount of the merchant’s loans. This sec-
ond statistical indicator is robust, and changes little when a value is added to the 
data, whether it is extreme or not: the median rises from 97 pounds to 99 pounds 
when the rediscovered loan contract is taken into account. The superiority of the 
median over the mean is clear in such a context. However, it is not necessary to 
consider adding an extreme additional value to the dataset under consideration 
to reach the same conclusion. This hierarchy between the two indicators can also 
be seen by thinking in terms of the quality of the estimate made in the specific 
context of an analysis of historical data: on the one hand, the median is much 
more stable than the mean with respect to ‘forgotten’ data; on the other hand, the 
dataset we are analyzing is necessarily fragmentary, since it is extracted from his-
torical sources. The choice is therefore quickly made between the two indicators.

This example, although extremely simple, shows that robustness appears as a 
highly desirable quality when estimating the typical value of a quantity appear-
ing in historical sources. The same conclusion can of course be drawn about any 
quantitative tool mobilized in any historical analysis. This is therefore also the 
case for the tools historians use to analyze social networks.3 The issue of robust-
ness is perhaps even more crucial in the application of these techniques. The 
fragmentary and imperfect condition of the sources is indeed an objection that is 
sometimes raised by historians when it comes to making use of these methods.4

3 Note that we will use the terms ‘network’ and ‘graph’ interchangeably throughout this 
paper. The same holds for ‘node’ and ‘vertex’.

4 Often because of confutations about the implicit assumptions they presuppose, as noted 
by Lemercier (2015), p. 296.

https://doi.org/10.25517/jhnr.v6i1.105
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1.2	 Centrality Metrics

In this paper we look at the robustness of a set of metrics often used in histori-
cal network analysis to estimate the status of individuals within their network, 
the measures of centrality.5 Since the first works devoted to this concept6 and the 
seminal studies in which its first rigorous definitions were introduced,7 numerous 
versions of it have been proposed in the literature, in order to question the im-
portance of vertices within the graph from different angles.8 However, historians 
most often focus on four of them, which we will consider here.9 Betweenness 
centrality counts the number of geodesics in the graph (i.e., the shortest paths 
along the edges of the graph) that pass through a given vertex. Closeness central-
ity calculates the distances between a given vertex and all the other vertices of the 
graph, and aggregates them into a synthetic indicator, defined as the inverse of 
the sum of all these distances. Degree centrality counts the edges of which a given 
vertex is one of the two ends. Eigenvector centrality assigns a score to a given ver-
tex on the basis of the scores assigned to its neighboring vertices, according to the 
principle that this score is high when the neighbors themselves have a high score. 
Linear algebra tools can assign all these relative scores at once.10

Each of these four metrics is a tool for estimating the importance within the 
network of each of the individuals who are part of it. While their general objec-
tive is identical, they do not measure exactly the same thing, and therefore differ 
in terms of interpretation. The interpretation that can be made depends on the 
context in which they are used, and the choices made to build the graph being 
considered (what do vertices and edges represent?), but the definitions given 
above still allow to draw some general principles, which we will mention very 
briefly here. A vertex with a high betweenness centrality score corresponds to a 
‘hub’ (also sometimes called a ‘broker’), a node through which a large number of 
connections between individuals in the network can pass. A high closeness cen-
trality value indicates that the vertex can easily reach all parts of the network. 
The eigenvalue centrality measures the prestige of an individual, in terms of the 

5 To our knowledge, only one study is devoted to the analysis of the properties of these 
metrics in the framework of a historical analysis: Düring (2016). This author’s point of 
view is quite different from ours, since his goal is to compare the list of the most impor-
tant individuals within a network obtained by calculating the centrality metrics with 
that which the historian obtains manually on the basis of his expertise concerning the 
dossier in question.

6 Bavelas (1948); Bavelas (1950).
7 Bonacich (1972); Freeman (1979).
8 See for example Das/Samanta/Pal (2018). A list of nearly 300 centrality definitions 

(at the time of writing) is given in Jalili/Salehzadeh-Yazdi/Asgari/Arab/Yaghmaie/
Ghavamzadeh/Alimoghaddam (2015).

9 See e.g. Hammond (2017); Rosé (2011); Riva (2019); Cellier/Cocaud (2012).
10 For a more formal definition of these four metrics, see for example Wasserman/Faust 

(1995).

https://doi.org/10.25517/jhnr.v6i1.105


Can historians trust centrality? 89

eISSN: 2535-8863
DOI: 10.25517/jhnr.v6i1.105

Journal of Historical Network Research
No.  6 • 2021 • 85 – 125

number of connections with prestigious individuals. These three metrics are 
global measures, in the sense that they account for the entire graph. On the con-
trary, degree centrality is a local measure, which considers only the direct rela-
tions of the vertex in question.11 It estimates the importance of an individual by 
measuring his activity in the network. These four metrics thus carry quite differ-
ent meanings, which can be combined to perform precise analyses (which indi-
viduals are central to the four measures, which are central only to a subset of them 
and why, etc.).

They are also used at a different level, that of whole graphs. It is indeed pos-
sible to aggregate the centrality scores of all the vertices of a network to calculate 
its centralization.12 This indicator estimates the extent to which the graph is 
globally organized around one or more focal points, i.e. it accounts for the ex-
istence of extreme values among the individual centrality scores of its vertices. 
A star-shaped graph has a very high centralization, while a complete graph (with 
all vertices connected to all the others) is associated with a low value. The four 
centrality measures lead to four different centralization concepts.

1.3	 Robustness and Centrality in Historical Networks

We are interested here in the robustness of these centrality metrics when com-
puted in historical network analyses. However, since they are more complex than 
central tendency indicators such as mean and median, there is no theoretical re-
sult to assess their robustness. It is therefore necessary, in order to meet this ob-
jective, to embrace the experimental approach, by observing the impact of “small 
deviations from the assumptions” on the values taken by these measures of cen-
trality. This exercise has already been carried out in graph theory literature, and 
has led to several interesting studies.13 However, these reasoned within a general 
framework and are therefore not very well adapted to historical analyses. In order 
to compare the reliability of these network metrics and convince historians, it is 
necessary to perform these tests on historical networks, especially with “small 
deviations from the assumptions” that make sense in the context of historical 
analysis.

This is the task we assign ourselves in this article. We carry out robustness 
tests on the measures of centrality mentioned above, with three networks con-
structed from medieval sources. The first is a political history network, which 
represents the links between protagonists of the conflict for the episcopal see of 
Cambrai in the 11th century. The second is a network of socio-economic history, 

11 This distinction is discussed for example in Scott (2000).
12 For details about this concept and its computation, see Freeman (1979), p. 226 – 237.
13 See, in addition to the references given in the bibliography of this article, the review 

Landherr/Friedl/Heidemann (2010).
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describing the credit relations of merchants in Ypres in the 13th century. The third 
is a hagiographic network that depicts the connections between lives of saints 
that are often compiled together in manuscripts. The test methodology we imple-
ment has been designed and constructed to replicate the problems faced by the 
historian due to the condition of the sources he handles.

The main objective for carrying out these robustness tests is to provide an-
swers to two questions. First, we question the confidence historians may have in 
the metrics of centrality, given the structurally incomplete and inaccurate na-
ture of the historical documents that serve as the basis for the construction of 
the networks they study. Are these measures of centrality sufficiently stable when 
subjected to ‘shocks’ that replicate the vagaries of historical sources? Can the 
conclusions drawn from them be considered sound? Second, we ask questions 
to compare these metrics in terms of robustness. Are some of them more robust 
than others to these shocks? Are some of them better suited for use in the context 
of analyzing historical networks?14

We have structured the battery of tests we perform into four experiments de-
signed to explore different aspects of the issue of centrality metrics’ robustness. 
Our methodology is developed in detail in Section 3 of the article, following a 
presentation of the data used in Section 2. Section 4 is devoted to the results that 
it permits us to obtain, which are commented upon and discussed. A concluding 
point is given in the last section.

2.	 Data

This section is devoted to the description of the three networks that we consider 
in this article, and upon which our tests are performed. Our choice of these three 
examples was not random: as we will see at the end of this section, they have quite 
distinct profiles, suggesting that test results could differ significantly.

2.1	 The	Cambrai	Investiture	Conflict

The first network that we consider was built by Nicolas Ruffini-Ronzani to model 
the Cambrai Investiture Conflict.15 At the end of the 11th and the beginning of the 
12th century, in the context of the Gregorian reform, two politico-religious per-
sonalities clash for the episcopal see of Cambrai: on one side is Walcher of Oisy, 

14 The search for the most appropriate metric for a particular context has already been 
undertaken in the literature. See, for example, for the dissemination of information in 
telecommunication networks, Kiss/Bichler (2008).

15 For a detailed description of the historical background and additional information 
about this network, see Ruffini-Ronzani (2020).

https://doi.org/10.25517/jhnr.v6i1.105
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the candidate of the emperor; on the other Manasses of Eu-Soissons at first, then 
Odo of Tournai from 1103 onwards, supported by the pope. Since the beginning of 
the conflict in 1092, the two parties have been fighting a real war, which the Treaty 
of Aachen put an end to in 1107, to Walcher’s disadvantage.

Several chronicles recount this conflict, but these are not the only sources that 
a historian can mobilize to study it: a fairly large number of charters (of which 176 
were kept in good enough condition to be used, dated from 1092 to 1107) testify to 
legal actions undertaken during this period by members of both sides. This diplo-
matic corpus is the material used to build the network we consider in this article.

This graph is defined as follows. Its vertices represent the persons who ap-
pear in these charters. An edge joins two vertices each time they have one of the 
following relationships in a charter: Alliance (X enters into an alliance with Y); 
Consent (X consents to an action of Y); Donation (X gives a property to Y, or con-
firms such a donation); Notice (X gives notice about an action of Y); Request 
(X requests from Y to take some action); and Subscription (X appears among the 
subscribers on Y’s charter). The edges of the network originally constructed by 
Nicolas Ruffini-Ronzani thus bear a type attribute, which we neglect in the con-
text of this paper.16 Note that these links, which are oriented by their nature, are 
considered to be non-oriented for the purposes of this article. An attribute source 
is also associated with each of the edges, which gives the identifier of the charter 
that attests to the relationship that the edge represents.

2.2	 The Ypres Credit Market

The second network that we use in our experiments models the Ypres credit mar-
ket in the second half of the 13th century17. This century is a period of economic 
prosperity for the Flemish city, at least in part thanks to the then flourishing tex-
tile industry. As in most medieval cities during this period, the lively market in 
Ypres is not without intense credit activity.

A large number of loan contracts are concluded between all kinds of individ-
uals, including wealthy foreigners who come to buy cloth, local entrepreneurs 
who sell it, and the city’s smallest artisans. At least a portion of such credit ar-
rangements are subject to the gracious jurisdiction of the city eschevins, and 
are recorded in writing in the form of chirographs. Until the beginning of the 
20th century, the archives of the city of Ypres held several thousand of these rec-
ognizances of debts, which unfortunately almost entirely disappeared during the 
bombing of the First World War. Around 1900, a local scholar, Guillaume des 

16 The question of the simultaneous consideration of these edges of different types is 
treated in de Valeriola/Ruffini-Ronzani/Cuvelier (2021).

17 Details about this network are given in de Valeriola (2019).

https://doi.org/10.25517/jhnr.v6i1.105
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Marez, nonetheless took note of summaries of many of these recognizances in 
notebooks, which the Commission royale d’Histoire recovered and edited.18 The 
information provided describes 4,953 usable loan contracts, dated between 1249 
and 1291, and includes, among other things, the names of all the parties involved, 
i.e. the creditors, debtors and guarantors of the corresponding loans.

These allow the construction of a graph in a similar way to that described 
above for the Cambrai graph. Vertices are individuals involved in at least one 
loan contract. An edge joins two vertices each time the two individuals in ques-
tion are related in one recognizance of debt, regardless of the type of relationship 
involved (creditor-debtor, debtor-debtor, creditor-guarantor, etc.). The direction 
of links is once more neglected. As in the case of the Cambrai graph, the edges 
carry an attribute source, which gives the identifier of the chirograph from which 
the information carried by the edge is extracted. Finally, we associate an attrib-
ute amount to the edges, which gives the amount (expressed in Artesian pounds, 
the currency most used in our recognizances of debts) of the corresponding loan. 
This is used in only one of the four experiments we carry out (Experiment 3); in 
the other three, it is simply ignored.

2.3	 The Co-tradition of Hagiographic Legends

The last network we study here models the co-tradition relationships of saints 
during the Middle Ages.19 Hagiographic narratives are very often the subject of 
compilations, in which the legends follow one after the other. The precise selec-
tion of the texts that are compiled together is not entirely due to chance, and it 
is legitimate to wonder how the copyists, who are at the origin of the sanctorals, 
chose the saints whose stories they tell.

To investigate this question, we used the database Bibliotheca Hagiographica 
Latina manuscripta.20 Created by the Bollandists, then extended by several re-
searchers and now hosted in its new form by the Institut de Recherche et d’Histoire 
des Textes,21 it lists a set of several thousand Latin hagiographic manuscripts, and 
gives various information for each of them, including the list of legends it con-
tains.

Our hagiographic graph is built on this basis. Its vertices represent each of the 
saints for which at least one manuscript contains a legend. An edge connects two 
vertices each time there is a manuscript that contains a text about each of them. 
As previously, we associate an attribute source to the edges, giving the identifier 

18 Wyffels (1991).
19 Further details about this dossier can be found in de Valeriola/Dubuisson (2021).
20 On this database, see Trigalet (2001).
21 The link to the Légendiers latins database will be available soon.

https://doi.org/10.25517/jhnr.v6i1.105
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of the manuscript in which the co-tradition relation that the edge represents is 
found. Each edge also bears an attribute century, which gives the date of the man-
uscript in which it is attested. It is used in only one of the four experiments we 
carry out (Experiment 4); in the other three, it is simply ignored.

Using the entire database leads to the construction of a graph composed of 
2,498 vertices and 1,487,563 edges. This huge number of edges makes calcula-
tions very long and very difficult to manage in terms of machine resources (see 
Section 3.4 on this subject). We therefore applied a filter to this gigantic graph: 
the hagiographic graph manipulated throughout this article is constituted from 
the manuscripts of the database whose place of conservation is Paris and which 
date from the 8th to the 15th century. While this means of selecting sources is 
of course objectionable in terms of historical analysis, it has no impact on the 
present methodological study.

2.4	 Comparison of the Three Networks

It is natural, if we want the results of our robustness tests to be representative, 
to apply them to networks that differ significantly from each other. Indeed, the 
stability qualities of metrics can be expected to depend on the properties of 
the graphs from which they are calculated.22 Table 1 presents information on each 
of the graphs we manipulated, allowing us to compare their main characteristics. 
It is to be combined with figures 1 and 2.23 The first gives the densities of the four 
normalized centrality metrics (based on their theoretical maximums, see Section 
3.1) for each of the three networks, and thus gives an idea of the distribution of 
individual vertex centrality values. On the second, the normalized centralization 
values are represented (i.e. the centralization values divided by the maximum 
value over the three networks), making it possible to compare the internal struc-
ture of the three networks.

The numbers presented indicate that the three networks have very different 
profiles. The Cambrai network is the smallest of the three in terms of the number 
of sources, number of vertices and number of edges. As might be expected due 
to the nature of the historical phenomenon it models (a conflict opposing two 
parties, each of which gathered around one or two individuals, candidates of both 
parties to the episcopal see), its centralization value is very high for betweenness 
and degree centralities. The existence of a small number of vertices with high cen-
trality values for these two metrics is clearly visible on the density plot. We also 
see on this plot (for betweenness centrality) that many vertices can be considered 

22 See for example Borgatti/Carley/Krackhardt (2006), p. 124; Frantz/Cataldo/Carley 
(2009).

23 Note that all centrality values presented here have been computed on the graphs after 
applying to them the simplification process described in Section 3.1.

https://doi.org/10.25517/jhnr.v6i1.105


Sébastien de Valeriola94

eISSN: 2535-8863
DOI: 10.25517/jhnr.v6i1.105

Journal of Historical Network Research
No.  6 • 2021 • 85 – 125

Cambrai Ypres Hagio.

number of source units 176 4,953 611

number of vertices 400 4,675 1,118

number of edges 1,419 12,012 229,672

number of pairs of vertices linked by at least one edge 685 11,050 92,667

edge density 0.008 0.008 0.143

unweighted diameter 6 14 5

average unweighted distance 2.82 5.01 1.92

transitivity 0.02 0.15 0.54

Tab.	1	 Main properties of the three networks we consider

degree eigenvalue

betweenness closeness

0.0 0.1 0.3 0.6 1.0 0.0 0.1 0.3 0.6 1.0

C

Y

H

C

Y

H

Normalized centrality value (cube root scale)

D
en

si
ty

 fo
r e

ac
h 

ne
tw

or
k

Network Cambrai Ypres Hagiographic

Fig.	1	 Densities of centrality metrics of the three networks
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as belonging to the periphery of the network, i.e. are not a crossing point of any 
geodesic.

The Ypres network has the largest number of vertices and is built from the 
largest number of sources. The moderate value of its transitivity coefficient (the 
proportion of 3-cliques among the triplets of vertices X, Y, Z such that X is con-
nected to both Y and Z), its large diameter and the high average distance between 
its vertices suggest that it is composed of a fairly large number of small clusters 
that are quite well separated from each other. This description is consistent with 
the way it was constructed, since all the creditors, debtors and guarantors of each 
chirograph are completely interconnected. Each recognizance of debt therefore 
corresponds to a clique (the size of which depends on the number of protagonists 
in the agreement). Note, however, that there is a set of well-connected vertices 
that act as the ‘center’ of the graph, as the high level of eigenvalue centralization 
and the eigenvalue centrality density plot suggests.

The hagiographic network has by far the highest number of edges, and there-
fore the highest density. Again, the graph construction process explains this: each 
manuscript is responsible for creating a clique whose size is equal to the number 
of legends it contains. Among our Parisian sanctorals, 6 include at least 100 leg-
ends, and 66 of them at least 50. The resulting graph is therefore the superposi-
tion of a set of cliques of rather large sizes. This explains the high value of its 
transitivity coefficient, its small diameter, the small average distance between 
its vertices (and consequently its high closeness centralization value), and the 
‘spread’ shape of the densities of degree and eigenvalue centralities.

0.00

0.25

0.50

0.75

1.00

betweenness closeness degree eigenvalue
Centrality metrics

Sc
al

ed
 c

en
tra

liz
at

io
n 

va
lu

e
(1

 =
 m

ax
 o

ve
r n

et
w

or
ks

)

Network Cambrai Ypres Hagiographic

Fig.	2	 Centralization of the three network with respect to the four centrality 
metrics
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Finally, Figure 3 gives the value of Spearman’s correlation coefficients between 
the six pairs of centrality metrics.24 It is interesting to observe that these coef-
ficients change quite a bit from one graph to another, although they are always 
positive.25 We can conclude that the amount of information provided by (and 

24 Spearman’s correlation coefficient measures the dependence between two statistical se-
ries by comparing the ranks of each value within the two series. This metric takes values 
between −1 and 1: a positive value indicates that the two series are ‘moving in the same 
direction’, a negative value that they are ‘moving in opposite directions’. In the case we 
consider, it therefore compares to rank each centrality metrics assigns to the network’s 
nodes. For a justification of this choice, see Section 3.3.

25 As the literature has already noted, for example Oldham/Fulcher (2019).
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Fig.	3	 Spearman correlation between the six pairs of centrality metrics in the 
three networks
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therefore the interest of) the joint use of several metrics of centrality also varies 
with the graph’s properties: the correlations are far from perfect (with coefficients 
close to 1), and the metrics are therefore not completely redundant. The high 
values of these dependency indicators for the hagiographic network probably 
come from its high density.26 For the Cambrai graph, the correlation between be-
tweenness centrality and the other three metrics can probably be explained by 
the large number of zeros among the values of the first.

3.	 Methodology

Let us now describe the experiments we perform to estimate the robustness of 
centrality metrics.

3.1	 General Remarks

Before doing so, a series of general remarks should be made about the way met-
rics and networks are handled in this paper. First of all, let us note that the com-
parison of the four metrics applied to the three graphs described in the previous 
section imposes two technical constraints upon them. On the one hand, the be-
tweenness centrality score of almost all vertices of the Cambrai graph is equal to 0 
if we consider its edges as directed. The comparison with other metrics loses part 
of its interest in this case; this is why the Cambrai and Ypres graphs, although in 
principle oriented, are considered in their non-oriented version.27 Note moreover 
that comparing the centrality metrics of two oriented graphs with those of a non-
oriented graph would make little sense.

On the other hand, closeness centrality is well defined only for connected 
graphs, i.e. those where there is a path (a succession of edges) starting from any 
vertex and arriving at any other vertex (since it implies the calculation of the dis-
tance between one vertex of the graph and all the others). The three base graphs 
described above are connected. Nevertheless, since some of the experiments we 
perform involve the disappearance of edges within them, the result may no longer 
be connected. It is therefore necessary to transform these networks into con-
nected ones before performing our calculations. In this case, we simply restrict 
ourselves to the largest connected component of the graph.28

26 This positive relationship has already been observed by Valente/Coronges/Lakon/
Costenbader (2008), p. 6.

27 This way of making the adjacency matrix symmetrical is classical, see for example 
Costenbader/Valente (2003), p. 289.

28 This is also the solution adopted in Platig/Ott/Girvan (2013), p. 2. Other solutions exist, 
for example, we could simply not consider simulations in which the graph becomes un-
connected, as in Costenbader/Valente (2003), p. 290.
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Second, as we will see below, we must note that our methodology is based on 
operations that require the selection of all the edges of the graph considered that 
correspond to a given subset of sources. This is why a source attribute is associ-
ated to the edges of the three studied graphs. Its importance for the tests we per-
form prevents us from directly aggregating the multiple edges that are present 
in the three graphs. By ‘multiple edges’, we mean here the situation in which two 
vertices X and Y are directly connected by several ‘parallel’ edges (as are vertices 
a and c in Figure 4), a situation that is observed many times in the three net-
works. The parallel edges that connect X and Y in this way are attested in different 
sources, which is information that we lose if we aggregate them directly.

The aggregation of these multiple edges is nevertheless a step that must be 
taken to calculate the centrality metrics. This operation is performed just before 
this calculation, so as not to interfere with the attribute source. It simply consists 
of replacing multiple edges with a single edge bearing an attribute weight that 
counts the number of multiple edges it replaces. For example, if vertices X and Y 
are connected by 4 edges before aggregation, they will be connected by a single 
edge of weight 4 after aggregation. In the special case of the Ypres graph in Ex-
periment 3, the role of the attribute weight is played by the attribute amount. The 
aggregation phase thus does not simply count the parallel edges, but calculates 
the sum of their amounts. If the 4 edges in our example are 5, 7, 12 and 21 pounds, 
the single edge representing them will have a weight equal to 5 + 7 + 12 + 21 = 45 
pounds after aggregation. Finally, let us note that the other attributes are dropped 
during this step.

These two operations of aggregation and restriction to the largest connected 
component together form the operation of graph simplification. In the rest of this 
article, when we say that a graph is simplified, we must therefore understand that 
its multiple edges are aggregated and that it is replaced by its largest connected 
component.

Figure 4 shows the application of this process to a very simple example graph. 
The original graph (on the left) is constructed from two historical sources (n° 1 

Fig.	4	 Application of the simplification process to an example graph
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and n° 2), information which gives rise to the edge attribute source. The two par-
allel edges linking vertices a and c are aggregated within the simplified graph 
(right) into an edge with weight 2. The two edges joining vertices b and c on the 
one hand, and a and c on the other, give rise to edges with weight 1. The vertices 
d and e, as well as the edge connecting them, are deleted in the process, since they 
form a non-maximal connected component of the original graph.

Third, and for the reasons we have just presented, we use alternative versions 
of the centrality metrics that are adapted to weighted graphs. The definition of 
betweenness and closeness centralities is easy to modify for this purpose, since 
it is sufficient to include the weights into how the distances are calculated.29 For 
degree centrality, we sum the weights of the edges incident on the vertex, rather 
than simply counting them. Because the eigenvector centrality is somehow only 
a mathematical property of the adjacency matrix of the graph, adding weights to 
the edges is not a problem (it simply modifies the matrix).30

Fourth, since the networks being compared do not necessarily have the same 
structure (i.e. the same number of edges and vertices), it is necessary to use 
standardized versions of these metrics. Therefore, for each of these, it is a matter 
of dividing the result obtained by the theoretical maximum that the metric can 
reach given the structure of the graph. Standardized metrics take values between 
0 and 1.

These remarks concern all centrality computations, whether they are applied 
to unshocked or shocked graphs.

3.2	 Experiments

In this article we carry out four different experiments on the basis of the networks 
defined above. The general idea of these experiments is as follows: we subject our 
three graphs to shocks intended to replicate the hazards that historical sources 
undergo, then compare the centrality metrics of the graphs resulting from these 
shocks (which we will henceforth call the shocked graphs) to those of the original 
graphs (the unshocked graphs). We are speaking here about defects in the data 
manipulated by the historian in two ways: the incompleteness of the data on the 

29 Note that the edge weights in our simplified graphs correspond to ‘link strengths’ (i.e. 
a high value corresponds to a strong relationship between the two vertices connected 
by the edge) and not to ‘link costs’ as expected when calculating a distance. They must 
therefore be transformed before being used in this way. We use the inverse function to 
do this: cost = 1 / weight.

30 For a description of the adjacency matrix of weighted graphs, see Wasserman/Faust 
(1995), p. 153.
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one hand (Experiment 1), and the inaccuracies in the data on the other (experi-
ments 2, 3, and 4).

Dealing with Incomplete Data

To estimate the robustness of the network metrics with respect to the first aspect, 
we will simulate the incompleteness of our datasets by removing some of the 
available data. This type of robustness test is relatively common in studies de-
voted to centrality metrics.31 Indeed, historical networks are not the only ones 
to suffer from the phenomenon of incompleteness: in many fields of application, 
the data used to build networks are fragmentary.32 In most of the studies in the 
literature on this issue, “removing some of the available data” means randomly 
(and uniformly) removing some of the vertices and/or edges of the graph.33 A set 
of stochastic scenarios is thus generated: in each of them, a different part of the 
set of vertices or edges is removed, thus simulating a different set of shocks. The 
metrics values are then recalculated on the shocked graphs that result from these 
random deletions (one for each stochastic scenario), and compared to the metrics 
values for the unshocked graph. Conclusions about stability can then be drawn 
from the observed differences. In probabilistic formalism, this process can be 
seen as a Monte Carlo simulation: to estimate the expected value of the robust-
ness of a metric when the corresponding graph is subjected to a random pertur-
bation, a large number of realizations of this perturbation are generated and the 
arithmetic mean is calculated.

Nevertheless, this method of randomly deleting vertices and/or edges is not 
suitable for all application contexts, as some authors have already noted.34 In par-
ticular, it is not at all suitable for historical networks. Indeed, they are built in a 
specific way: by accumulating information from historical sources, each of which 
brings a ‘cluster’ of information to the network. The incompleteness of the infor-

31 See for example Bolland (1988), which, to the best of our knowledge, is the first study to 
evaluate the robustness of centrality measures in a systematic experimental manner, as 
well as the other references cited below.

32 Landherr/Friedl/Heidemann (2010), p. 373, col. 3.
33 It is also frequent to see another operation on the graphs considered, although one which 

makes less sense in the context of a historical network: the addition of random vertices 
and/or edges (note however that in our Experiment 3 some vertices are added to the 
graph, see below). For these four operations of deleting and adding vertices and edges, 
see for example Bolland (1988); Borgatti/Carley/Krackhardt (2006); Galaskiewicz (1991); 
Costenbader/Valente (2003); Tsugawa/Ohsaki (2015).

34 See, for example, concerning networks constructed from interviews of community 
members, the remarks made in Costenbader/Valente (2003), and concerning transport 
networks during Roman antiquity, Groenhuijzen/Verhagen (2016). Note also that some 
authors do not select the edges and vertices to be deleted according to a uniform draw, 
but by associating deletion probabilities to the edges and vertices which depend on their 
properties within the graph: Platig/Ott/Girvan (2013).
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mation used to build such a network stems from the incompleteness of the avail-
able sources. It is therefore natural, rather than randomly removing edges and/
or vertices in these networks, to randomly remove elements from the document 
set used to construct the graph. For example, each Cambrai charter makes it pos-
sible to add to the network several edges (when one takes into account the re-
lations between the author, the disposer, the witnesses, etc., learned from the 
document), and possibly one or more vertices. Randomly deleting edges and/or 
vertices would thus be tantamount to deleting only certain parts of these infor-
mation clusters, a process that does not suit the issue of the absence of certain 
sources with which the historian is confronted. It is thus necessary, if one wants 
to decrease the number of edges and/or vertices of the graph of Cambrai, to do so 
charter by charter.

We therefore apply to the studied graphs shocks that are distinct from those 
applied in previous studies, but we keep the randomness of the process, a point 
that deserves a brief comment. The methodology we implement aims to imitate 
the vagaries of historical sources, some of which are preserved while others are 
not. These hazards, whose succession constitutes the path of the documents 
through time, can certainly be considered as deterministic. Events such as theft, 
misclassification, destruction and other disappearances of sources do not really 
happen by chance, but are the consequences of particular circumstances that 
can probably be explained. It is therefore natural to ask why the use of random 
draws is relevant in the context of a historical analysis. Although the course of the 
sources is deterministic, it is not known to us in its entirety, and in the vast ma-
jority of cases, we know nothing of the documents that have not been preserved 
(their number, content, etc.). Randomness is used here to model those elements 
that cannot be known or predicted. This way of using a set of stochastic scenarios 
to model the unknown and the unpredictable is very common in exact sciences, 
and has led to intense epistemological reflections on the notion of randomness.35 
Finally, it should be noted that the opposite approach, which would consist of 
not selecting the sources to be deleted randomly but on the basis of deterministic 
criteria, does not provide a meaningful estimate of the robustness of the metrics. 
Consider for example the Ypres graph, and a process of deleting the chirographs 
that would be based on their date. To estimate the robustness of the centrality 
metrics, one would, for example, remove all recognizances of debts written over 
a certain period of time (e.g. we would remove all the acts of 1290 –  1291, keeping 
only those of 1249 –  1289) and compare the results with the measures in the un-
shocked graph. The downside of this method is obvious: as it is very unlikely that 
the network is homogeneous from a chronological point of view, removing a set 

35 For example, Henry Kyburg writes that “the concept of randomness […] is relative to our 
body of knowledge, which will somehow reflect what we know and what we don’t know”. 
(Kyburg (1974), p. 217). A recent summary of the epistemological discussion is given in 
Eagle (2005).
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of successive chirographs amounts to removing from the graph a part that per-
haps has its own characteristics, different from the rest. The comparison with the 
unshocked graph would thus be meaningless. The same observation could have 
been made if any other selection criteria had been used, such as the geographical 
origin of the creditor.

Experiment 1

Let us now describe more formally the design of our first experiment, which tests 
robustness against data incompleteness. The first step is to choose the proportion 
of sources that will be removed from the set of documents used to build the net-
work. Let’s say that it is equal to 10%: in this case, we decide to remove 17 charters 
for Cambrai, 495 chirographs for Ypres and 61 manuscripts for the hagiographic 
graph. We then generate 1,000 different stochastic scenarios. For each of them, 
a set of documents determined by a uniform random draw and corresponding to 
10% of the total available documents is erased, and a graph is constructed based 
on the information contained in the remaining 90% of documents. Figure 5 sum-
marizes this process.

The truncated graph is then simplified and the values of the four centrality 
metrics are calculated. In this way, we obtain 1,000 shocked graphs and therefore 
1,000 sets of values for the metrics. Experiment 1 is finally repeated several times 
with different proportions of sources removed (1%, 2%, 5%, 10%, 20% and 40%), 
in order to see how the metrics evolve when the loss of sources is more and more 
substantial. Table 2 lists the successive steps of Experiment 1.

...

Original set of 
available documents

Available documents 
in scenario 1 (90%)

Available documents 
in scenario 2 (90%)

Available documents 
in scenario 1000 (90%)

Fig.	5	 Description of Experiment 1
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Dealing with Inaccuracies

Assessing the robustness of network metrics against the existence of inaccuracies 
in the data or working hypotheses is a larger and more complicated task. Indeed, 
the potential errors that may appear in the course of the historian’s analysis are 
of very diverse natures, and have their origins in phenomena that are also very di-
verse. These inaccuracies are sometimes the direct result of archive producers, 
such as when a scribe makes a mistake – intentional or unintentional – in a doc-
ument. They can also be made by the historian who transcribes, or by the opti-
cal character recognition software he uses, which would transform one word into 
another. Other inaccuracies are direct consequences of the researcher’s working 
hypotheses, for example simplifications of the reality being studied that do not 
take into account this or that aspect of the information contained in the sources. 
Since it is obviously impossible to deal with all eventualities, we have chosen to 
restrict ourselves to the three inaccuracies that seem to us to be the most impor-
tant and most frequent in the analysis of historical networks.

The remarks made concerning the incompleteness of the data can also be for-
mulated for the inaccuracy of the data. While the shocks we apply to the graphs 
in experiments 2, 3 and 4 are different from those in Experiment 1, the same gen-
eral principles apply.

Experiment 2

In Experiment 2, we look at the working hypotheses related to the identifica-
tion of the individuals composing the network.36 This problem, which is faced 
by many researchers using historical network analysis on medieval data, is two-
fold. Very often, there is no reason to believe that two mentions of the same an-
throponym indicate the same individual, and not two individuals with the same 

36 This problem, along with possible solutions, is presented in de Valeriola (2021).

1. Fix a proportion of sources to remove in {1% ; 2% ; 5% ; 10% ; 20% ; 40%}.
2. For each of the 1,000 scenarios:

a. use a random draw to select the sources to remove,
b. delete from the graph all the edges whose source attribute is among the selected sources,
c. simplify the resulting shocked graph,
d. compute the four centralities on the simplified graph.

Output: the values of the four centrality metrics for each vertex of the unshocked graph (except 
for those which disappear in one of the simulations) in each of the 1,000 scenarios, for each af-
fected sources proportion.

Tab.	2	 Successive steps and output of Experiment 1
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name. Conversely, mentions that designate the same individual often appear with 
variations in spelling that are sometimes difficult to reconcile. An extreme exam-
ple would be surnames translated from one language to another in some sources, 
such as “Jean de Neuveglise”, who also appears as “Jan van Nieukerke” in the Ypres 
sources (both forms are equivalent to “John of Newchurch”, in French and Dutch).

To replicate problems of this type, we perform two types of operations on 
graphs, which we will refer to as experiments 2a and 2b. First, we merge pairs of 
vertices, to replicate the inaccuracy of considering that two anthroponyms des-
ignate two different individuals, where in reality they designate only one (Ex-
periment 2a). The vertex resulting from such a fusion has as its neighbors all the 
neighbors of the two original vertices: in a sense, it gathers their edges. Figure 6a 
illustrates this operation: vertices a and d merge into a single vertex called a + d; 

Fig.	6	 Examples illustrating the two operations of Experiment 2: 2a. (above): 
the two vertices a and d are merged into a new vertex a+d, 2b. (below): the ver-
tex a is split into two vertices a1 and a2.
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the edges of a + d are those of a and d at the same time. Second, we divide vertices 
into two new vertices, to replicate the inaccuracy which arises when considering 
that two anthroponyms designate a single individual, whereas they are actually 
two different individuals (Experiment 2b). The two vertices resulting from this di-
vision split the edges of the original vertex equally. Figure 6b gives an example of 
such a division: vertex a is divided into one vertex a1 and one vertex a2, each in-
heriting half of a’s edges.

After fixing the proportion to impact, we select the vertices to which the two 
operations we have just described will be applied by a random draw. We then sub-
ject each of these vertices to one of the two merge or split operations described 
above. The graph thus shocked is then simplified, and the centrality metrics are 
calculated. Table 3 lists the successive steps of Experiment 2.

Experiment 3

In Experiment 3, we consider the case where the quantities that are used as 
weights for the edges are subject to inaccuracies, such as reading or transcrip-
tion errors. For this, we study the Ypres network and consider the loan amounts 
as edge weights, as described in Section 2.2. In order to stick as closely as possible 
to the situation that arises in a historical network analysis, we try to replicate as 
closely as possible the errors that occur when reading quantities in the sources. 
As these amounts are expressed in Roman numerals in the Ypres chirographs, this 
is the form in which we handle them. Two errors are simulated here, in what we 
will call experiments 3a and 3b. The first one is that of the transcriber who substi-
tutes one letter for another, and transforms for example the number “xxi” into the 
number “xvi” (Experiment 3a). To do this, the computer randomly chooses one of 
the letters making up the amount to be processed, and replaces it with another 
randomly chosen letter from {i ; v ; x ; l ; c ; d ; m}. When this operation produces 

1. Fix a proportion of vertices to affect in {1% ; 2% ; 5% ; 10% ; 20% ; 40%}.
2. For each of the 1,000 scenarios:

a. use a random draw to select the vertices to apply the operations to,
b. for each of these vertices, apply the following:

 • if Experiment 2a is performed (merge), chose another vertex at random and replace 
these two vertices with a new one,

 • if Experiment 2b is performed (split), replace the vertex with two new vertices,
c. simplify the resulting shocked graph,
d. compute the four centralities on the simplified graph.

Output: the values of the four centrality metrics for each vertex of the unshocked graph (except 
for those which disappear in one of the simulations) in each of the 1,000 scenarios, for each af-
fected vertices proportion.

Tab.	3	 Successive steps and output of Experiment 2
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a string that does not match the writing of a number in Roman numerals, another 
random substitution is performed instead, and so on until this is the case. The 
second error we replicate is that of the transcriber who forgets to copy one of 
the letters of the number, and transforms, for example, the number “xxi” into 
the number “xx” (Experiment 3b). Here, the computer randomly chooses a letter 
to delete, multiplying the attempts if necessary, as for the substitution error.

Since each recognizance of debt is, of course, associated with only one amount 
(the amount of the loan in question), it is essential to ensure that the weights of 
the edges of the graph that correspond to the same source undergo the same op-
erations. To do this, we start again from the sources used to construct the graph: 
we first select by random draw a subset of these sources (e.g. 10% of them). We 
then subject each corresponding amount to one of the two substitution or dele-
tion operations described above. The weights of all the edges in the graph that 
correspond to the source in question are then modified. The shocked graph is 
simplified, and the centrality metrics are calculated. Table 4 lists the successive 
steps of Experiment 3.

1. Fix one type of error to apply (substitution or deletion), and a proportion of sources to affect in 
{1% ; 2% ; 5% ; 10% ; 20% ; 40%}.

2. For each of the 1,000 scenarios:
a. use a random draw to select the sources to apply the errors to,
b. for each of these sources, apply the error to the amount:

 • if Experiment 3a is performed (substitution), replace one letter of the number in its 
Roman numeral form with another letter,

 • if Experiment 3b is performed (deletion), delete one letter of the number in its Roman 
numeral form,

c. apply these changes to the amounts of all the edges whose source attribute is among the se-
lected sources,

d. simplify the resulting shocked graph,
e. compute the four centralities on the simplified graph.

Output: the values of the four centrality metrics for each vertex of the unshocked graph in each of 
the 1,000 scenarios, for each affected sources proportion.

Tab.	4	 Successive steps and output of Experiment 3
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Experiment 4

In Experiment 4, we test the stability of the metrics against dating errors. To do 
so, we restrict ourselves to the hagiographic graph, as it is constructed on the 
basis of sources extending over a large chronological period: 8 centuries, com-
pared to 12 years for the Cambrai graph and 53 years for the Ypres graph. To this 
end, we manipulate a quantity that does not correspond to the centrality metrics 
themselves, but a measure of their variation over time, which we must present be-
fore describing the experiment.

When we consider that the edges of this network have an attribute century, it 
can be seen as a dynamic graph, which evolves over time. Here we are interested 
in how measures of centrality change over the centuries, for example to find out 
which vertices alter their importance greatly over time. This information is val-
uable in the context of the historical analysis of sanctorals: it is a question of de-
termining which saints have experienced the greatest shifts in popularity over the 
centuries (at least in terms of co-tradition).37 We therefore consider the values 
of these metrics for the subgraphs made up of the edges corresponding to each 
of the centuries. For a given vertex and a given measure of centrality, we thus ob-
tain the set of values that the metric takes successively, century after century. This 
way of producing a time series from a dynamic graph by cutting it into a succes-
sion of “snapshot photos”,38 each of which correspond to a static graph, is well 
known in the literature.39

The focus here is on the variation of the metrics over time: we therefore cal-
culate the total variation of the obtained time series divided by their length, i.e., 
the average of the absolute values of their differences. Let us take a simple ex-
ample: suppose that the degree centrality of a saint passes, between the 10th and 
13th centuries, through the values 10, 15, 40, 30. In this case, the total variation is 
equal to (|15 − 10| + |40 − 15| + |30 − 40|)/4 = 10.

Let us now present the design of Experiment 4. Our goal is to simulate source 
dating errors. To do this, we randomly select a set of the manuscripts used as a 
basis for the construction of the hagiographic graph, and modify the century as-
sociated with them. To make the errors plausible, we do not make this transfor-
mation randomly: each of the drawn manuscripts is ante-dated or post-dated by 
only one or two centuries. Indeed, for several reasons of historical, paleographic, 
philological, etc. nature, it is rare for a historian to make a huge dating error. An 
8th century manuscript is thus very unlikely to be mistaken for a 15th century 

37 de Valeriola/Dubuisson (2021).
38 Lemercier (2015), p. 186.
39 See, among many examples, Uddin/Piraveenan/Chung/Hossain (2013).
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manuscript, and vice versa. These two time ‘directions’ (ante-dating and post-
dating) lead to the two experiments 4a and 4b.

The first step in Experiment 4 is to set a proportion of manuscripts to which 
to apply the transformations. For each of the 1,000 stochastic scenarios, a list 
of such manuscripts is then drawn randomly, of which two-thirds see their cen-
tury increase (in Experiment 4a) or decrease (in Experiment 4b) by one unit, and 
one-third by two units. The century attribute of the edges associated with these 
manuscripts are then transformed accordingly. The total variation of the central-
ity metrics is calculated as explained above, based on the division of the shocked 
graph into subgraphs corresponding to each century. These subgraphs are differ-
ent in each of the stochastic scenarios, since the set of edges that undergo a trans-
formation at the level of the attribute century is different each time. Table 5 lists 
the successive steps of Experiment 4.

3.3	 Comparison Statistics

We have presented above how we simulate the incompleteness and imperfec-
tion of the sources, which result in the random generation of shocked graphs. We 
now need to explain how we compare these shocked graphs with the unshocked 
graphs. As we will see, we calculate different quantities for this purpose, which we 
will call ‘comparison statistics’ in the rest of this article.

Let’s start with the first three experiments, which give similar outputs: the cen-
trality score of each vertex in each of the 1,000 scenarios for each of the four 
metrics. In this case, we compute four different statistics. First, we estimate the 

1. Fix a shift direction (backward or forward shift) and a proportion of manuscripts to affect in 
{1% ; 2% ; 5% ; 10% ; 20% ; 40%}.

2. For each of the 1,000 scenarios:
a. use a random draw to select the manuscripts to apply the operations to, then:

 • if Experiment 4a is performed (backward shift), subtract one century from the century 
attribute of 2/3 of selected manuscripts, and two centuries from the other 1/3,

 • if Experiment 4b is performed (forward shift), add one century to the century attribute 
of 2/3 of selected manuscripts, and two centuries to the other 1/3,

b. for each century:
 • create a subgraph containing all edges whose century attribute corresponds to the se-

lected century,
 • simplify this subgraph,
 • compute the four centralities on the simplified subgraph,

c. use the centralities values obtained for each century to compute their total variation.

Output: the values of the total variation of the four centrality metrics for each vertex of the un-
shocked graph in each of the 1,000 scenarios, for each affected sources proportion.

Tab.	5	 Successive steps and output of Experiment 4
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‘deformation’ that each network as a whole undergoes. To do this, the global mea-
sure of centralization is calculated in each scenario. We then take the average of 
these results for each network, and normalize it with the value of the central-
ization of the unshocked graph (which is shown in Figure 2). The same quan-
tity calculated for the unshocked network is, due to this division, equal to 1. This 
normalized average of centralizations is the first of the four comparison statistics 
used in the Results section below for experiments 1, 2 and 3.

Second, we question whether or not individual centrality scores change signif-
icantly. To test this aspect, we calculate the correlation coefficient between cen-
trality scores of the unshocked network vertices and those of each of the 1,000 
shocked networks vertices.40 When the vertices of the unshocked network do not 
exactly match the vertices of the shocked network, we perform the calculation 
only for the vertices they have in common. Among the three main statistical cor-
relation indicators, we have chosen Spearman’s coefficient, which we believe is 
the most appropriate.41 Once these 1,000 correlations are obtained, their average 
is calculated. The same quantity calculated for the unshocked network is equal 
to 1, since it then corresponds to the correlation of the series of initial centrality 
scores with itself. This average of correlations is the second of the four statistics 
used in the Results section below for experiments 1, 2 and 3.

Third, we look more closely at the individuals who can be considered the most 
important within the network. Indeed, it is often to these individuals that the 
historian’s eye turns when using these metrics. It is therefore natural to wonder 
whether this list of vertices is stable when the graph is subjected to the perturba-
tions of experiments 1 to 3. To estimate this stability, we calculate, for each of the 
1,000 scenarios, the proportion of individuals who are in the top 10% of the un-
shocked network in terms of centrality (or, equivalently, whose centrality score is 
greater than or equal to the 10%-quantile of all centrality scores) and who are still 
in this top 10% in the shocked network.42 It is therefore the intersection (or over-
lap) between the top 10% of the two graphs. Once these 1,000 proportions are 
calculated, we take the average. The same quantity calculated for the unshocked 

40 This statistic has already been computed in the literature, see e.g. Borgatti/Carley/Krack-
hardt (2006); Platig/Ott/Girvan (2013).

41 It seems pertinent, in the context of a historical analysis, to work on the basis of the ranks 
of the vertex centrality scores, and not on the scores themselves. The ranking of individu-
als in the network in increasing order of centrality is indeed one of the main interests of 
the historian. This is why we have not chosen Pearson’s correlation coefficient. We chose 
Spearman rather than Kendall because the latter makes an estimate relatively close to 
the third comparison statistic, the overlap (see below). It should be noted, however, that 
all three coefficients were calculated in our exploratory analyses, and the conclusions 
obtained did not differ significantly.

42 Several authors compute this statistic, see Borgatti/Carley/Krackhardt (2006); Tsugawa/
Ohsaki (2015).
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network is equal to 1, since in this trivial case we calculate the intersection of a set 
with itself. This average of proportions is the third of the four statistics used in 
the Results section below for experiments 1, 2 and 3.

Fourth, we are interested in the relationship of the four measures of central-
ity to each other. We wonder about the impact of the condition of sources on the 
extent to which the metrics converge or diverge. In each of the 1,000 scenarios, 
we calculate the Spearman correlation coefficient (for the same reasons as above) 
between the 6 pairs of centrality measures.43 We then compare each of these re-
sults with the correlation between the same two metrics in the unshocked graph 
(which is shown in Figure 3). This matrix of correlation coefficients is the last of 
the four statistics used in the Results section below for experiments 1, 2 and 3.

Let us move on to the fourth experiment, which must be considered separately 
because its output is not the same as that of the other three. Our goal here is to 
see if the evolution of vertex centrality metrics undergoes large changes when 
taking into account dating errors. Once the 1,000 scenarios are generated, we 
obtain a set of 1,000 total variations for each metric of each vertex. For each sce-
nario, we then calculate the correlation coefficient (Spearman) between the stat-
istical series composed of the total variations of the shocked network and that of 
the total variations of the unshocked network. Finally, we take the average (over 
the scenarios) of the correlations obtained. The same quantity calculated for the 
unshocked network is equal to 1, since it then corresponds to the correlation of 
the series of initial total variations with itself. This average of the correlations is 
used in the Results section below for Experiment 4.

3.4	 Calculability and Implementation

All our calculations were performed in the R scripting language, using the igraph 
library.44

A remark about the number of scenarios to be generated is worth mentioning 
here. We chose to set this number at the highest possible value, because of the 
large variation in the structure of the shocked graph obtained from one scenario to 
another.45 Indeed, we affect a fixed number of sources in each scenario, but not a 
fixed number of edges or vertices, so that the shocked graphs that are constructed 
potentially present quite disparate profiles. As we have seen in Section 3.3, most 

43 The effect of shocks on the correlation between centrality metrics has been studied in e.g. 
Borgatti/Carley/Krackhardt (2006); Tsugawa/Ohsaki (2015).

44 R Core Team (2020); Csardi/Nepusz (2006).
45 Compared with Bolland (1988), p. 241 (100 scenarios), Platig/Ott/Girvan (2013), p. 5 

(500 scenarios) or, in a slightly different context, Borgatti/Carley/Krackhardt (2006), 
p. 126 (10,000 scenarios).
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methods of comparing the values of the centrality metrics of randomly truncated 
graphs with those of the unshocked graphs are based on averages over all scenar-
ios. By choosing a large number of random scenarios, we ensure that these means 
are ‘stable’ (or, in statistical terms, we control the variance of the estimator).

Unfortunately, it is not possible to indefinitely increase the number of sce-
narios to be simulated. Setting the number of scenarios means making a com-
promise between the stability of the results obtained and the time the computer 
needs to perform the calculations. In the case of the Ypres graph for example, the 
computer calculates 4 measures of centrality for the 4,675 vertices, in graphs gen-
erated on the basis of 6 proportions of erasure in 1,000 scenarios each time. No 
less than 4 × 4,675 × 6 × 1,000 = 112,200,000 calculations are made. It should 
also be noted that the calculation of a metric value sometimes involves heavy cal-
culations: for closeness centrality, for example, the score of a single vertex is ob-
tained by calculating the distance of this vertex from all the other vertices of the 
graph. In order to perform this vertiginous number of calculations, we have par-
allelized the procedure on an eight-core intel i7-7700HQ @ 2.80 GHz processor. 
More than eight hours of calculations were required to obtain the results of Ex-
periment 1 for the three networks. This duration is multiplied by 10 in the case of 
Experiment 2, where the graph transformation operations (merging and splitting 
vertices) themselves take a lot of time.

4.	 Results and Discussion

This section is dedicated to the presentation and discussion of our results. We 
will first consider them raw, then at increasingly summarized levels.

4.1	 Raw Results

We will present separately the results concerning the correlation between met-
rics and those concerning the other comparison statistics, since the output of 
the computation is different in these two cases: one value per pair of metrics on 
the one hand, one value per metric on the other. Figure 7 gives the results of the 
first statistic for two of the three networks.46

These plots show curves with fairly gentle slopes, with total value changes (dif-
ferences between the correlation for the unshocked graph and for a proportion of 
affected sources equal to 40%) lying between −0.24 and 0.16. The correlation co-
efficients increase (in 30/66 curves) or decrease (36/66 curves) with the propor-

46 We omit the results for the third network here, for reasons of space. They are very similar 
to the two presented here.
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Fig.	7	 Results in terms of correlation between metrics for Cambrai and Hagio-
graphic networks
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tion of affected sources depending on the experiments and networks, without any 
trend seeming to emerge.47

This stability indicates that the impact of experiments 1 to 3 on the correlation 
coefficients between metrics is very limited. We can therefore conclude that the 
vagaries of the sources do not significantly distort the relationships that our met-
rics have with each other. The results concerning correlation between metrics do 
not need to be further summarized.

Let’s now look at the four other comparison statistics: centralization, corre-
lation, overlap and total variation. For each experiment, for each proportion of 
affected sources, for each network, for each centrality metric and for each statis-
tic, we obtain a number to compare with the constant value 1, which corresponds 
to the unshocked network. These results can be visualized as a matrix of plots, as 
shown in Figure 8 for Experiment 1.

If we omit the numerical results and the hierarchies it presents (which will be 
summarized more effectively below), the main interest of this plot lies in the gen-
eral look of the represented curves.

First, it should be noted that these curves do not show very ‘violent’ or ‘rugged’ 
shapes. This means, on the one hand, that the impact of source removal on cen-
trality metrics depends smoothly (if not continuously) on the proportion of re-
moved sources, an obvious conclusion that has the merit of reassuring us of the 
quality of the design and implementation of Experiment 1. On the other hand, 
from the regularity of these curves, we see that the number of scenarios we con-
sider is high enough to extract the trend of the observed phenomena, i.e. to ob-
tain stable results.

Second, it is interesting to note that although the curves are all decreasing, 
they show differences in terms of concavity. The curves giving the results for cen-
tralization (first line of plots) are concave: their slope is more and more neg-
ative. On the contrary, those of the overlap (the third line of plots) are convex: 
their slope is less and less negative. This distinction is due to a major difference 
between these two comparative statistics. The overlap statistic considers only a 
small part of the vertices of the graph, and is therefore potentially (remember 
that we generate a large number of stochastic scenarios) strongly affected by the 
removal of a small proportion of the sources. When this proportion increases, 
this effect is gradually mitigated, as if the most important part of the damage was 
done with the first deletions. On the contrary, the centralization statistic is a met-

47 This contradicts Bolland’s observation that the correlation between metrics tends to 
increase (up to a 90% limit) when edges of the unshocked graph are removed (Bolland 
(1988), p. 251).
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ric that takes into account all the vertices and describes the general internal or-
ganization of the graph. Removing a small proportion of the sources therefore 
has only a limited effect, which is compounded when the proportion of removals 
increases and the overall structure of the network changes.

Third, note that there is no significant crossover between these curves. The 
hierarchy between the metrics that their relative positioning indicates is there-
fore always about the same, regardless of the proportion of sources removed. For 
this reason, and since similar conclusions can be drawn from similar plots for the 
other experiments (which we do not present here for reasons of space), we can 
now stick to the extreme values of these curves, i.e. the values of the comparison 

Cambrai Ypres Hagiographic

C
entralization

C
orrelation (Spearm

an)
Top 10%

−overlap

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Proportion of affected sources

Va
lu

e 
of

 th
e 

co
m

pa
ris

on
 s

ta
tis

tic
s

Centrality metrics betweenness closeness degree eigenvalue

Fig.	8	 Results in terms of centralization, correlation and overlap for Experi-
ment 1
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statistics when the proportion of affected sources (or nodes, in the case of Experi-
ment 2) is 40%.

4.2	 First Level of Summarization

This extreme value is the quantity represented on the plots in Figure 9, which 
gives an overview of the results obtained for all experiments.

These lollipop plots therefore each represent the worst value (i.e. the furthest 
from 1) obtained from our robustness tests. For example, the very first plot in this 
figure (Experiment 1, Cambrai) shows the four levels of the centralization statistic 
that correspond to the rightmost points of the curves shown in the plot at the top 
left of Figure 8 (values 0.76, 0.76, 0.74 and 0.68). Below each lollipop is written 
the rank of each of the centrality metrics, calculated for that particular experi-
ment, graph and statistic, on the basis of their distance from 1.48 We can thus read 
in the very first plot that, for the Cambrai graph in Experiment 1 in terms of the 
centralization statistic, degree centrality is the most robust metric, followed by 
eigenvalue centrality, then betweenness centrality and finally closeness central-
ity. A number of observations can be made on this set of plots, before moving on 
to the next level of summarization of results.

First, let’s look at the values obtained as a whole. None of them goes very low, 
since the smallest is 0.58 (Experiment 3a, Ypres, overlap, degree centrality), and 
more than two thirds are higher than 0.8, despite the fact that we consider a sig-
nificant proportion of affected sources/nodes (40%). This observation, combined 
with the fact that the curves in Figure 8 have a smooth shape, makes it possible to 
answer the first question asked in Section 1.3. Yes, historians can trust centrality 
metrics, at least to some extent. The hazards experienced by the sources (at least 
the replications of these hazards that we have simulated) should have a rather 
minor impact on the values of these metrics, and therefore do not completely de-
stroy the conclusions that the historian can draw from their use.

Second, note that most of the values obtained are smaller than 1, but not all. 
This of course occurs only for centralization, since the other two comparison stat-
istics, correlation and overlap, cannot take values greater than 1. This means that 
the value of centralization is most often underestimated, but it is also possible 
that it is overestimated. The historian’s caution must therefore apply in both di-
rections.

48 For example, in the case of centralization in Experiment 2a for Ypres, the ordered metrics 
are: degree (value = 0.984, distance to 1 = 0.016), eigenvalue (value = 0.981, distance to 
1 = 0.019), closeness (value = 0.937, distance to 1 = 0.063) and betweenness (value = 1.12, 
distance to 1 = 0.12).
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Third, we observe on this set of plots a great diversity of results in terms of net-
works, comparison statistics and experiments. This brings nuances to the overall 
conclusion drawn in point 1 immediately above, which should not be misinter-
preted. While the overall level of results is quite good, the disparity of these fig-
ures calls for caution and further analysis.

The values taken by some statistics in particular cases can be linked to the 
characteristics of the corresponding objects, and thus better understood. For ex-
ample, the fact that betweenness centrality shows good performance in terms of 
overlap in the case of Cambrai for experiments 1 and 2b is rather intuitive. In-
deed, as we noticed in Section 2.4, this metric takes very differentiated values for 
this network, with a large number of vertices having a centrality of 0, but a very 
small number of vertices with a huge centrality. The objective of the overlap stat-
istic is to account for the movements observed in the top 10% vertices, among 
which are obviously those of the second category that we have just mentioned. 
While the number of geodesics passing through these few pivots of the graph is 
of course impacted by the operations carried out in experiments 1 (edge suppres-
sion) and 2b (vertex split), it is unlikely that they will take them out of the lead-
ing group. The opposite phenomenon can be observed, however, for Experiment 
2a: betweenness centrality is in fourth place in terms of overlap for the Cam-
brai graph. The operation carried out in this experiment (vertices merging) has 
a much greater potential impact on this metric. Let’s imagine that the computer 
merges two ‘moderately important’ vertices, each belonging to a different party. 
Before the merging, the vast majority of the shortest paths pass through the net-
work hubs, the candidates for the episcopal see; after the merging, it is possible 
that a significant portion of the shortest paths will pass through the merged ver-
tex and no longer through the hubs. In this eventuality, the vertices whose be-
tweenness centrality is high can ‘easily’ lose their status.

It is possible to identify some more global trends within this diversity, as we 
will see below, but these are rather rare. We are far from a perfectly clear-cut sit-
uation, with uniform patterns repeating themselves from graph to graph or from 
statistic to statistic. A notable exception is the hagiographic network, where a 
hierarchy of metrics occurs almost every time for experiments 1 to 3. Similarly, 
careful observation of all the plotted values suggests that closeness centrality is 
quite often assigned a high rank, and eigenvalue centrality a low rank. It is nev-
ertheless difficult, on the basis of Figure 9, to trust this sketch of hierarchy, or to 
discover other trends in these results. In order to untangle this somewhat chaotic 
situation, we need to move to higher levels of summarization of the results.

4.3	 Second and Third Levels of Summarization

We now build two different second level summaries. We first calculate a score 
that aggregates all the results obtained for each of the metrics in the four experi-
ments, represented in Figure 10.
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To do this, we take the average of the ranks of the metrics over the graphs and 
over the comparison statistics.49 For example, the average score of betweenness 
centrality in Experiment 1 (the height of the leftmost red lollipop) is obtained by 
averaging the 9 ranks indicated below the lollipops in the plots in the first row 
of Figure 9: (3 + 4 + 1 + 1 + 2 + 2 + 4 +4 + 4) / 9 = 2.78. In addition, the global aver-
age over the experiments is also calculated, which is represented on the plot by a 
black horizontal segment and corresponds to the third level summary.

We then calculate, in a similar way, a score that aggregates all the results ob-
tained for each of the three graphs in the four experiments, represented in Fig-
ure 11.

As in the previous plot, a black horizontal segment gives the overall average 
over the experiments. This plot allows us to see which networks are, on average, 
most impacted by the experiments we subject them to. The hagiographic net-
work takes first place on the podium, a conclusion consistent with the observa-
tions made above on the basis of Figure 9, and that is thus rather unsurprising. 
Indeed, as we saw in Section 2.4, this graph is much denser than the other two. Its 
high number of edges probably makes it less sensitive to the operations we per-

49 It seems far better to calculate the average of the ranks than the average of the results: 
what would it mean to add a correlation coefficient to a normalized centralization score?
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Fig.	10	 Mean ranks of metrics in each experiment (lollipops) and over experi-
ments (black horizontal segments). The horizontal dotted grey line represents 
the total average rank (2.5)
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form on it.50 The next network in order of increasing impact is that of Ypres, but it 
is closely followed by that of Cambrai. It is interesting to note that both have op-
posite profiles in terms of experiments: the Ypres graph is less affected by Experi-
ment 2 than by Experiment 1, while the opposite is true for the Cambrai graph.

Let us now return to Figure 10, which allows to draw up a hierarchy of central-
ity metrics and thus provide an answer to the question asked in Section 1.3. Eigen-
value centrality is the most robust under this criterion, followed closely by degree 
and betweenness centralities. We also observe that, if these three mean ranks are 
quite close to each other, the same cannot be said for the dispersion (over the ex-
periments) of these values around their mean: the four values of the eigenvalue 
centrality are much less scattered than those of the degree centrality, which in 
turn are much less scattered than those of the betweenness centrality.51 Between-
ness centrality is rather extreme from this point of view, since it is the most robust 
for Experiment 4, but the least robust for Experiment 2. This observation about 

50 The literature is divided on this relationship between robustness and density. Some 
authors observe an inverse phenomenon to ours, in which robustness decreases when 
density increases (Borgatti/Carley/Krackhardt (2006), p. 134; Galaskiewicz (1991)), 
while others show that the relationship depends on the metric of centrality considered 
(Frantz/Cataldo/Carley (2009), p. 319 – 321).

51 This observation is confirmed by the standard deviations of these three series of four 
numbers: 0.37 for eigenvalue centrality, 0.78 for degree centrality, and 1.16 for between-
ness centrality.

Fig.	11	 Mean ranks of networks in experiments 1 and 2 (lollipops) and over ex-
periments 1 and 2 (black horizontal segments). The horizontal dotted grey line 
represents the total average rank (2)

1.0

1.5

2.0

2.5

3.0

Cambrai Ypres Hagiographic
Network

M
ea

n 
ra

nk
 (o

ve
r m

et
ric

s
 a

nd
 c

om
pa

ris
on

 s
ta

tis
tic

s)

Experiment 1 2

https://doi.org/10.25517/jhnr.v6i1.105


Sébastien de Valeriola120

eISSN: 2535-8863
DOI: 10.25517/jhnr.v6i1.105

Journal of Historical Network Research
No.  6 • 2021 • 85 – 125

dispersion allows us to be more confident about the very tight order given by the 
averages for the first three metrics. Indeed, a small dispersion value is an enviable 
quality, since it means a great uniformity over the experiments, i.e. that the stabil-
ity of the metric is about the same for each of the experiments. Finally, closeness 
centrality is the least robust of our four metrics, with some consistency across the 
four experiments.52

Note that looking at the mean rank and the dispersion around this mean rank 
is not the only way to analyze these results. We can also decide to look at the max-
imum rank on the experiments (which corresponds to the worst performance of 
each metric). This other way of comparing the results reflects the idea that a met-
ric is globally robust if it is robust in all situations, that is, in our case, regardless 
of the type of experiment we subject it to. The hierarchy obtained by comparing 
the maximum ranks is the same as that obtained by comparing the average ranks.

5.	 Conclusion

In this paper, we have assessed and compared the robustness of centrality metrics 
in the context of their use in historical network analysis. To do this, we have im-
plemented a battery of tests that simulate the source defects that historians face, 
both in terms of incompleteness and inaccuracy. Our results show that, from 
a global point of view, centrality is a sufficiently stable quantity to be used in 
such a context. However, we have also shown that the hazards experienced by the 
sources have impacts that differ in magnitude depending on the network studied, 
the comparison statistic used, and the centrality metric considered. This finding 
calls for caution in the choice of network tools applied, and for nuance when in-
terpreting the results of an analysis of historical networks using centrality.

We have found throughout the previous section that our conclusions are not 
always consistent with the literature. It should be recalled here that the experi-
ments we conduct are not the same as those carried out in these studies, since 
they are directly inspired by the historian’s practice. It is therefore legitimate that 
the results obtained are different. One can even go further, and argue that these 
divergences carry an interesting meaning. Indeed, they show that it is relevant to 
study the robustness of centrality metrics in our particular context, that of his-

52 The literature does not give a uniform picture of this hierarchy. For some authors, the 
four metrics are equally robust (Borgatti/Carley/Krackhardt (2006), p. 134; Tsugawa/
Ohsaki (2015), p. 34), while for others the betweenness is the most unstable (Bolland 
(1988), p. 248 – 250; Costenbader/Valente (2003), p. 305). Eigenvalue is sometimes con-
sidered the most robust (ibid.), but sometimes it is closeness centrality that takes the 
top spot (Kim/Jeong (2007), p. 5). These results are therefore sometimes in adequacy, 
and sometimes in complete inadequacy with ours (see the commentary on this subject 
below).
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torical analyses. We conclude that the ‘one size fits all’ approach does not work 
well, and that the particularities of the field of application need to be considered. 
This begs for a multiplication of methodological studies on the properties of his-
torical networks.

We were also able to establish a hierarchy among the four centrality metrics 
considered, from the most to the least robust. We think it is important to take 
this ranking into account, since it is directly related to the degree of confidence 
one can have in the conclusions that centrality allows us to draw about a network. 
In particular, it seems necessary to avoid basing an analysis of centrality solely on 
the closeness metric, and not to focus on the results it provides when other met-
rics are used alongside it (and especially if they lead to different conclusions).

These recommendations may seem disappointing at first glance, since they 
weaken some of the tools historians have at their disposal to carry out their net-
work analyses, thus making these analyses less efficient. However, this is what it’s 
all about: in a sense, robustness is a matter of compromise. By using a robust tool, 
we trade efficiency for stability, something that is essential for historical studies. 
The very famous statistician Anscombe presents it as an insurance policy: you pay 
a premium (part of the efficiency of your process), and in exchange you get pro-
tection against accidents (i.e. process deviations).53

This type of compromise is, of course, not unfamiliar to historians, since it also 
occurs when the conclusions of a historical study are nuanced with respect to the 
sources from which they were drawn. We can even take this reflection further, 
going back to the reason that led us to analyze the robustness of centrality met-
rics. We wondered how confident we could be in what these tools teach us about 
the historical objects that these networks model. This function is nothing other 
than that of historical criticism, if we take, for example, Paul Veyne’s definition.54 
It thus appears that considerations around robustness, an a priori purely statis-
tical concept, are an integral part of this central tool of the historical method, the 
“common treasure of the corporation”55 of historians.

The case of robustness is certainly not an isolated one, and many quantitative 
techniques, when applied to historical data, can play the role of criticism tools. 
Can we not therefore rethink the place of this set of methods within history as a 
discipline? According to Pirenne, the various specialized branches of history that 
he calls auxiliary sciences (epigraphy, diplomatics, numismatics, etc.) arose from 
the particularization of the process of criticism to particular objects and tech-

53 Anscombe (1960).
54 Veyne (1984), p. 12.
55 Stengers (2004), p. 103.
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niques (related to inscriptions, charters, coins, etc.).56 Following this idea, his-
torical quantitative methods would therefore deserve to be included in the list of 
history sub-disciplines. Placing them in this way in a new framework would make 
it possible to reflect on fundamental questions that have so far only been touched 
upon, on the historical data themselves and their relationship to the quantita-
tive. We can only hope that this time will come soon, and that new paths will then 
open wide.
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